

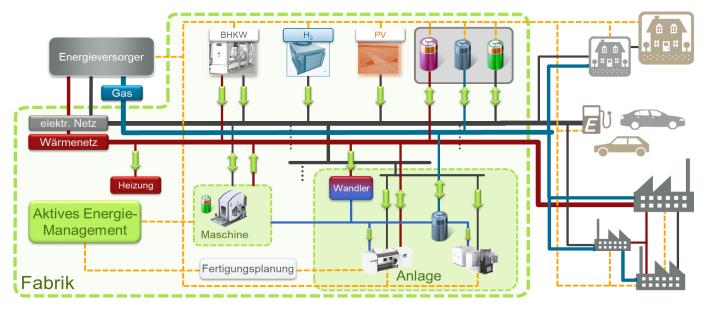
Forum: Nachhaltigkeit – Chancen und Potenziale für sächsische Unternehmen

Energieeffizienz in KMU – jetzt und in der Zukunft

Freiberg | 30. November 2022

»Ressourceneffiziente Produktion«

Zielszenario

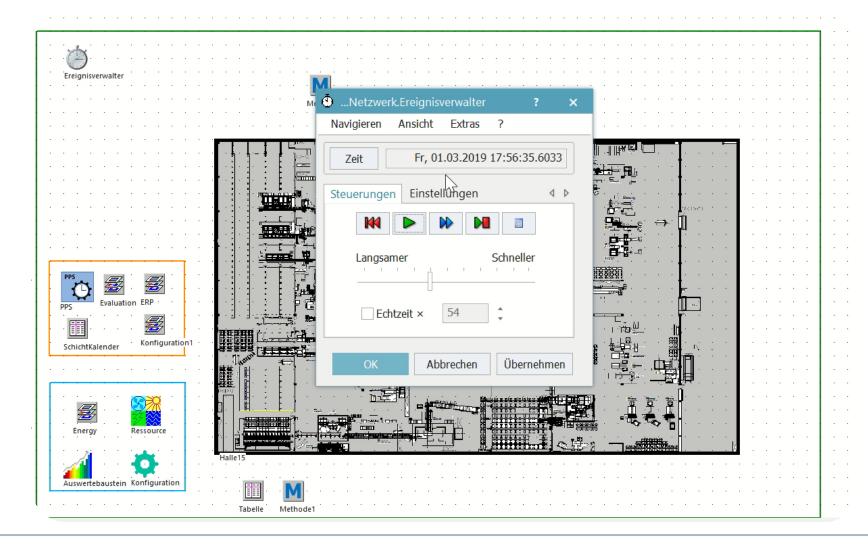

»Sektorenkopplung in der Fabrik« als Lösungsansatz für emissionsfreie Produktion

Lösungsbausteine

für nachhaltige Energieversorgung und -nutzung

- **Aktives Energiemanagement** Energieträgerübergreifende Steuerung/Regelung sämtlicher Energieflüsse
- Geschlossene Kreisläufe Energiespeicherung/-rückführung/-wandlung
- Produktions-/Gebäudeinfrastruktur Verknüpfung mit Intralogistik und Produktionstechnik/-systemen
- **Regenerative Energien** (auch grüner Wasserstoff) Dezentrale Erzeugung/Nutzung

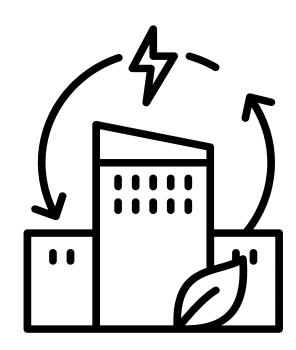
Herausforderungen


- Ökologische Bewertung! Integration in Entscheidungsvorgänge für Fabrik, Produktionstechnik und -prozess
- **Fabrikplanung und -betrieb** »Building Information Modeling« für den Digitalen Zwilling der Fabrik für Planung und Betrieb

Projektbeispiel

Materialflusssimulation zur Identifikation von Ineffizienzen

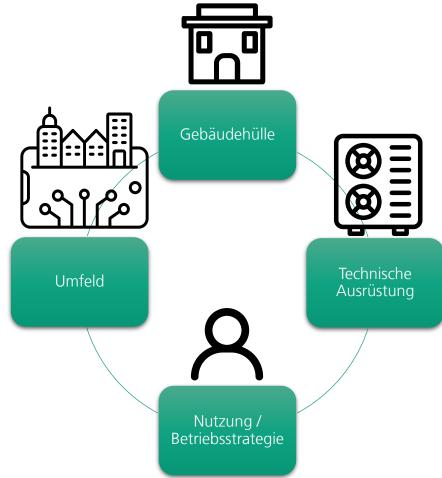
Perspektive


Gebäude

Klimaziele:

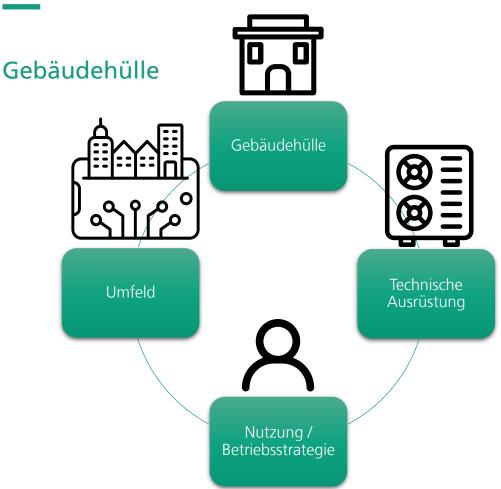
- Ab 2030 dürfen in der EU nur noch klimaneutrale Wohnhäuser gebaut werden
- bis 2050 sollen Bestandsgebäude emissionsfrei gemacht werden.

Lösungsweg: "der dänische Dreisprung"


- 1. Sparsame, effiziente Prozesse
- 2. Vernetzung
- 3. Erneuerbare Energien

Grafik: Vanessa Goh, thenounproject

Zusammenspiel vieler Aspekte

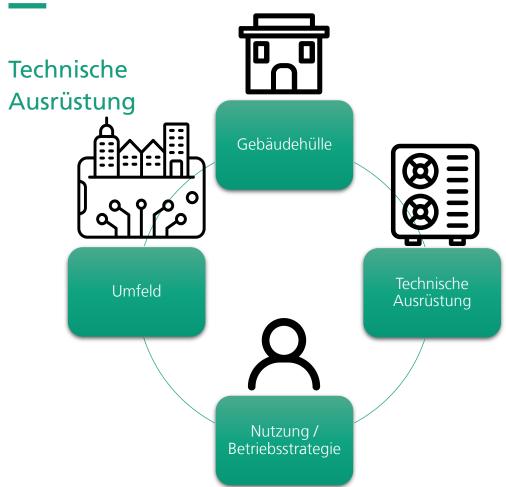


Smart City by Candy Design from https://thenounproject.com/browse/icons/term/smart-city/ air heat pump by Lomaxy from https://thenounproject.com/browse/icons/term/air-heat-pump/

Zusammenspiel vieler Aspekte

Möglichkeiten:

Gute Dämmung


Umsetzung:

- Nachträgliche Änderungen teuer
- Große Wirkung

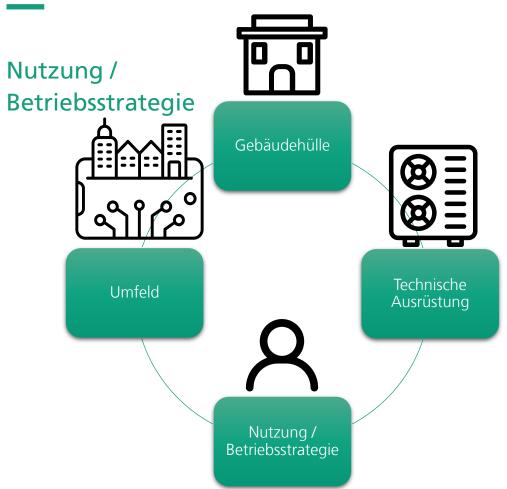
Smart City by Candy Design from https://thenounproject.com/browse/icons/term/smart-city/ air heat pump by Lomaxy from https://thenounproject.com/browse/icons/term/air-heat-pump/

Zusammenspiel vieler Aspekte

Smart City by Candy Design from https://thenounproject.com/browse/icons/term/smart-city/ air heat pump by Lomaxy from https://thenounproject.com/browse/icons/term/air-heat-pump/

© Fraunhofer IWU

Möglichkeiten:


- "Neue" Technologien
 - Wärmepumpen, BHKW, Phasenwechselspeicher, Kälte-aus-Wärme
- Möglichst energie-effiziente Systeme
- Flexibilität schaffen und nutzen: Speicher
- Erneuerbare Energiequellen
- Vernetzung

Umsetzung:

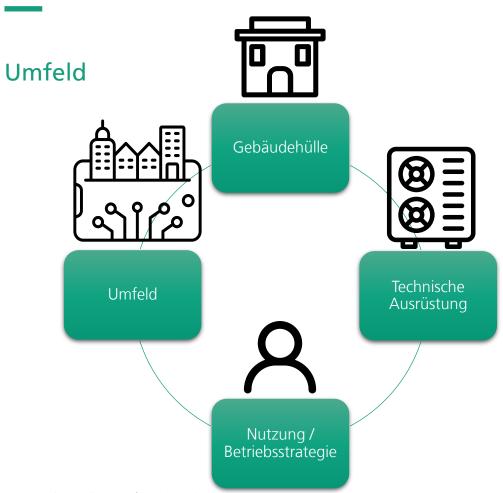
- Mittlerer / Hoher Invest
- Große Wirkung

Zusammenspiel vieler Aspekte

Möglichkeiten:

- Bedarfsorientierte Nutzung
- Vermeidung von Betriebsfehlern
- Vorausschauende Optimierung / Flexibilität nutzen

Umsetzung:


- geringer Invest
- Mittlere Wirkung
- Schnell möglich

Smart City by Candy Design from https://thenounproject.com/browse/icons/term/smart-city/ air heat pump by Lomaxy from https://thenounproject.com/browse/icons/term/air-heat-pump/

Zusammenspiel vieler Aspekte

Möglichkeiten:

- Demand-Response-Management
- Abwärmenutzung
- Neue Fernwärme-/kältenetze
- Gemeinsame Nutzung von Ressourcen

Umsetzung:

- Schwierige Umsetzung
- Marktvoraussetzungen vielfach noch nicht gegeben

Smart City by Candy Design from https://thenounproject.com/browse/icons/term/smart-city/ air heat pump by Lomaxy from https://thenounproject.com/browse/icons/term/air-heat-pump/

Projektbeispiel: Energiekonzeptplanung Leipziger Verkehrsbetriebe

Publikation: TGA Fachplaner 04/22

Situation:

Große Liegenschaft mir mehreren Gebäuden unterschiedlicher Baujahre sowie historisch gewachsenen Energiesystemen im Verbund: Gaskessel, Dampferzeuger, BHKW & Geothermie.

Aufgabenstellung:

Erstellung eines neues Energiekonzeptes im Zuge einer Erweiterung sowie Teilmodernisierung bestehender Infrastruktur

Aktion/Durchführung IIS/EAS:

- Analyse des Ist-Standes inklusive erweiterte Datenerfassung (zusätzliches Messsystem)
- Ableiten von Effizienzpotentialen und verfügbaren Reserven (Sondenfeld, etc.)
- Simulation der potentiellen Zukunftsszenarien unter Effizienz- und Kosten-Vorgaben

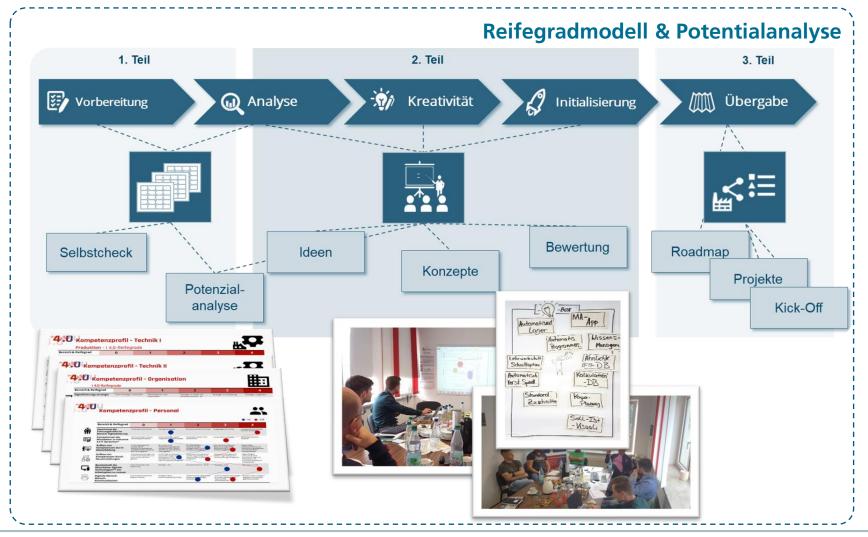
Ergebnis: Empfehlungen

- zur Verbesserung des aktuellen Betriebs: effizientere Adaption an Nutzung, Optimierung von Regelungsgrößen und Änderungen von Vorlauftemp., etc.
- Zur Gestaltung des neuen Energiekonzeptes unter Nutzung des bestehenden Erd-Sondenfeldes

Simulation / Digitaler Zwilling

Komplexe TGA-Anlagen effizienter betreiben

Im Zuge der Erweiterung am Straßenbahn-Instandhaltungsstandort Heiterblick der Leipziger Verkehrsbetriebe (LVB) wurde dessen Wärme-Energiekonzept im Ist-Zustand zunächst im Detail analysiert und auf Basis der ermittelten Kapazitäten Zukunftsvarianten erstellt. Während des Prozesses wurden Erkenntnisse gewonnen, die über die konkreten Anlagen hinaus Gültigkeit besitzen.



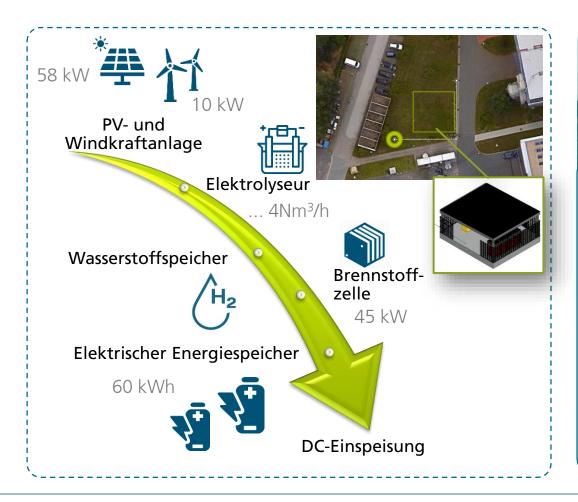
Standort Heiterblick der Leipziger Verkehrsbetriebe: Erkennbar sind die beiden fast baugleichen Hallen Haupt- und Betriebswerkstatt, die Instandhaltungswerkstatt (große graue Halle im Hintergrund), das Straßenbahndepot im Vordergrund und die Verwaltungs- und Sozialgebäude (grau entlang der Zufahrtsstraße).

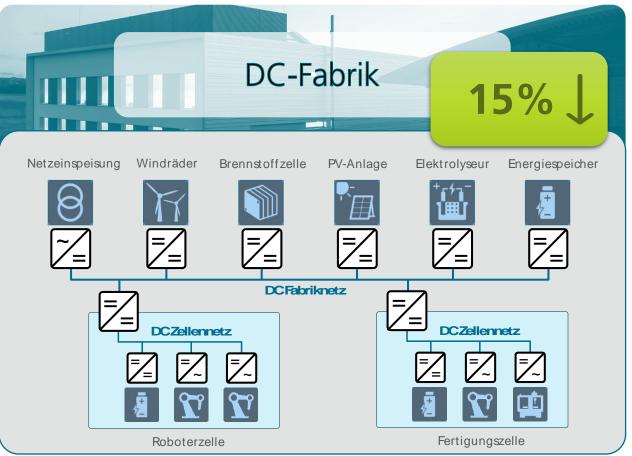
Unterstützung

Entwicklung und Priorisierung von Maßnahmen

Vielen Dank für Ihre Aufmerksamkeit.

Marian Süße marian.suesse@iwu.fraunhofer.de +49.371.53971517 https://twitter.com/CFTSea


Andreas Wilde andreas.wilde@eas.iis.fraunhofer.de +49.351.45691386



www.fraunhofer-zukunftsfabrik.de/

Umsetzung eines nachhaltigen Energiesystems

»Grüne Kette« zur Erzeugung und Verwertung von Wasserstoff in Fabriken | DC-Fabrik

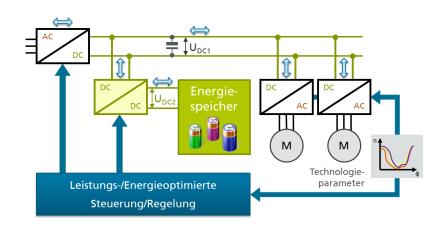
ESiP - Energiespeicher in der Produktion

Motivation und Nutzen:

Steigerung des Einsatzes von **Energiespeichern in stationären Anwendungen** der metallverarbeitenden Industrie zur: Senkung von Spitzenlasten, Rückgewinnung von Bremsenergie, Erhöhung der Versorgungsstabilität, Optimierung der Eigenerzeugung, Erhöhung der Ausnutzung mittels Handel am Energiemarkt

Ziele:

- 1. Auslegungswerkzeug für Energiespeichersysteme unterschiedlicher Technologie an Maschinen- und Anlagen
- 2. Optimierung der Betriebsführung von gekoppelten Energie- und Leistungsspeichern (z. B. Ultracap-Batterie)
- **3.** Aufbau **Demonstrator** (maschinenintegriertes Energiespeichersystem)


Projektpartner: Fraunhofer IWU (Koordination), KIT ETI, Skeleton Technologies,

Power Innovation, LioVolt, EA Systems Dresden

Laufzeit: 03-22 bis 02-25

Gesamtprojektbudget: 2,25 Mio. €

Fördermittelgeber: BMWK

Mehrwert

Senkung des Energieverbrauchs um bis zu 30% durch kundenindividuelles, intelligentes Energiemanagement

Umfassende Transparenz über den Energieverbrauch

- Visualisierung von Betriebsdaten zur Übersicht über die Energieverbräuche
- ✓ Schnelle, KI-gestützte Identifikation von Anomalien und Betriebsfehlern

Optimierung des Energieverbrauchs

- Automatisierte Identifikation der bedeutendsten Ansatzpunkte
- Entscheidungsunterstützung durch Simulation von Zukunftsszenarien

Bewertung der ergriffenen Maßnahmen

- **Automatisierte** Verbrauchsvorhersage
- **Evaluation der** Zielerreichung

Alleinstellungsmerkmale

Ausstattung und Kompetenzen

Durch unser **eigenes Messequipment** sorgen wir stets für eine geeignete Datenbasis.

Mittels automatischer (KI) Konfiguration von Monitoringsystemen liefern wir Ihnen schnell Transparenz über Ihre Betriebsdaten und lenken Ihren Blick auf die größten Hebel für die Optimierung.

Durch **Modellierung und Simulation** können wir in die Zukunft schauen und helfen Ihnen die richtige Entscheidung zu treffen.