

Business from technology

Hybrid and electric bus activities in Helsinki area

2. Fachkonferenz Elektromobilität im ÖPNV 25-26th November 2013 Kimmo Erkkilä & Nils-Olof Nylund VTT Technical Research Centre of Finland

2

Index

- VTT's activities at bus research
- Hybrid buses in IEABUS project
- eBUS-project
- Summary

VTT's activities on HD vehicles

- VTT (Technical Research Centre of Finland) commissioned a new heavyduty laboratory in 2002
 - Testing of complete vehicles on chassis dynamometer
 - Distance based "real-life" emissions and energy consumption
 - Effect of driving cycle
 - Comparison of technologies
 - Fuels
 - Drivelines
 - Available bus models
 - Calibrations and components

4

First tests in May 2002 Today some 300 buses have been tracked by VTT (inc. follow-ups)

The Finnish Centre for Metrology and Accreditation granted accreditation for VTT's measurements in 2003

Actual bus performance – 2011 database

Braunschweig	Lukumäärä n	Ajomäärä Min	Max	CO g/km	HC g/km	CH4* g/km	NOx g/km	PM g/km	CO2 g/km	CO2 eqv** g/km	FC kg/100km	FC MJ/km
2 - akseliset				3					- 8			
Diesel Euro I	2	555025	672700	1.39	0.32		15.59	0.436	1219	1219	38.6	18.4
Diesel Euro II	13	160500	1125674	1.60	0.21		12.88	0.213	1258	1258	40.7	17.3
Diesel Euro III	14	15934	788164	0.85	0.12		8.48	0.209	1191	1191	38.4	16.3
Diesel Euro IV	8	6105	474152	2.96	0.10		8.36	0.112	1184	1184	38.2	18.2
Diesel Euro V***				2.96	0.10		7.51	0.089	1184	1184	38.2	16.2
Diesel EEV	18	1020	498819	0.81	0.04		6.65	0.066	1127	1127	38.6	15.6
Ethanol EEV	1	98032	98032	1	0.43		5.58	0.037	1153		65.3	18.6
Diesel Hyb, EEV	4	2602	44620	0.58	0.02		4.18	0.034	811	811	25.7	10.9
CNG Euro II	2	211000	672946	4.32	7.12	6.76	16.92	0.009	1128	1283	42.1	20.7
CNG Euro III	2	37600	237189	0.05	2.84	2.51	9.44	0.019	1177	1235	43.7	21.5
CNG EEV	8	1824	454460	2.00	1.11	1.05	2.99	0.008	1250	1274	46.3	22.7
2 - akseliset, kevyt						A.C.O.						
Diesel****	3	993	26436	0.99	0.04		7,10	0.050	927	927	30.5	13.0
3 - akseliset												
Diesel Euro V	4	1400	232494	6.68	0.03		3.16	0.089	1362	1362	44.8	19.0
Diesel EEV	3	64836	94910	1.26	0.07		7.43	0.080	1462	1462	47.6	20.2
CNG EEV	4	121773	538360	8.61	1.53	1.45	6.22	0.014	1411	1444	52.4	25.7
(ind.x) = yksilöin tunn	niste											
*Maakaasuautoille kä	ytetty CH4 = Th	IC * 0.95, die	seleille CH4 =	= 0								
** CO2 eqv = CO2 + :	23 * CH4											
*** Euro V tulokset ar	rvioitu Euro IV tu	losten perust	eella									
**** Euro III. Euro IV	FEV											

http://www.transeco.fi/files/556/Kaupunkibussien_paastotietokanta_2011_Yhteenveto_VTTn_menetelmista_ja_mittauksista.pdf

Business from technology

FUEL AND TECNOLOGY ALTERNATIVES FOR BUSES

Overall energy efficiency and emission performance IEA AMF Annex XXXVII & Bioenergy Task 41/Project 3

TransEco Bus Seminar 6.2.2012 Nils-Olof Nylund VTT Technical Research Centre of Finland

Contents of IEA BUS project

- Well-to-tank analysis
 - based on existing data for various fuel options
 - ranges depending on feedstock and process
- Tank-to-wheel analysis
 - actual testing of the most relevant technology and fuel options
 - fuel efficiency and exhaust emissions
 - effects of driving conditions
- Well-to-wheel analysis
 - synthesis of WTT and TTW
- Cost estimates
 - direct costs (infrastructure, fuel and vehicle)
 - external costs (valuation of exhaust emissions)

TTW Fuel economy of hybrids (average of four)

9

TTW Nitrogen oxides

10

TTW Particulate Matter

TTW green house gases

12

eBUS – Tekes funded project

- EV city bus test field and facilities
 - Unique test platform for EV city bus research
 - Test line including charging points (Friisilä Tapiola), Veolia operate buses
 - Chassis dynamometer measurements at VTT comparison database of over 100 city buses + follow ups with different fuels and technologies
 - Finnish challenging climate conditions if the bus works in Finland it will work in most of places
- Budget ca. 4.6 M€
- Four year project, from 2012 to 2015

13

- Tekes Finnish Funding Agency for Technology and Innovation
- HSL Helsinki PTA
- Espoo City
- LVM Ministry of Transport and Communication
- Trafi Road safety agency
- Fortum Energy company
- Veolia Operator
- European Batteries Batteries
- Vacon Electric drives
- Kabus Bus manufacturer
- VTT, Aalto University, Metropolia Researchers

Aalto-yliopisto

eBUS test platforms

- Four test platforms
 - Actual city bus test line (Espoo 11)
 - Laboratory for testing complete vehicles
 - Full-size test mule for testing components
 - Simulation tools

14

15

eBUS research objectives

- Chassis dynamometer measurements
 - Energy efficiency on different driving cycles
 - Energy flows and losses
 - Comparison between bus types
 - Battery deterioration during the field tests
- Dataloggers
 - Effect of extreme conditions on energy consumption and life span
 - Real life usage cycles for EV-buses and it's partial systems

"Veolia operates, VTT monitors, Metropolia builds, Aalto simulates"

16

eBUS research objectives

- Simulations
 - Guidelines for bus line planning
 - Battery demands
- Acceptance
 - Drivers
 - Passengers
- Component and systems development
 - Adaptable city bus test mule
 - Testing possibilities for electric motors, batteries, power electronics, IT-systems, etc.

"Veolia operates, VTT monitors, Metropolia builds, Aalto simulates"

First electric buses on eBUS project (Veolia) Caetano, BYD, Ebusco, more under negotiation

BYD signs up Finland as electric bus customer

INDUSTRY NEWS | ASH | MARCH 13, 2012 AT 5:47 PM

Veolia, the Finish public transport company, has inked a deal with BYD to supply electric buses to Espoo city, a suburb of Helsinki. As part of the agreement, Veolia Transport Finland will conduct real operations with BYD eBUS-12 in Espoo for three years. The Technical Research Centre of Finland (VTT) will take the role of monitoring and measuring during BYD eBUS-12's daily operations, so that EV buses can be verified as one of the key solutions for Veolia

Transport Finland to ensure sustainable mobility

Henry Li, Senior Director of **BYD** stated: "**BYD** is the significant project in Finland, which gives **BYD** reliable even in such harsh climatic conditions. **B** reduce pollution in large cities, reduce the operat believe that this project in Finland will be a bi

Liikenne 26.11.2012 klo 8:55 | päivitetty 26.11.2012 klo 9:24

Ensimmäinen sähköbussi starttaa liikenteeseen Espoossa

Helsingin Seudun Liikenteen sähköbussikokeilu käynnistyy tänään ensimmäisellä linjalla. HSL testaa eri valmistajien sähköbussien toimintaa Suomen kesä- ja talvioloissa lähivuosina.

🖒 Suosittele 🛛 🚹 35 henkilöä suosittelee tätä.

Portugalilainen sähköbussi on ensimmäinen testiajossa olevista ajoneuvoista. Kuva: Veolia

HSL:n ja Veolian ensimmäinen testikäytössä oleva sähköbussi starttaa tosi toimiin maanantaina Espoossa. HSL testaa tulevina vuosina eri valmistajien sähköbusseja pääkaupunkiseudun liikenteessä. Ensimmäinen bussi kulkee Espoon sisäisellä linjalla 11.

18

eBUS proto Vehicle Platform "test mule"

- Kabus City Bus
 - Full aluminium lightweight body
 - Length 12 m
 - Weight just over 8000 kg including electric powertrain and excluding seats

Pre-results from laboratory tests (new methods)

Pre-results from laboratory tests (new methods)

Heating, cooling and ventilation not included

Pre-results from laboratory tests (new methods)

Pre-results from laboratory tests (new methods)

Overall status of the eBUS project 16.11.2013

- By the end of the year, project will reach it's halfway
- Four test platforms has been set up
- Chassis dynamometer updated for measuring electric vehicles
 - Power source and measurement systems
- Test mule built for component testing
- Electric bus test line for benchmarking vehicles and their subsystems in harsh conditions
- Late 2013 there should be 3 different electric buses on test line + test mule and fourth is coming early 2014

24

Climate effects of electric buses

- Climate effects
 - totally dependent on how the electricity is generated
 - carbon intensity ranges from 0 to some 1000 g CO₂/kWh
 - Electromobility advocates say:
 - EVs always run on renewable electricity
 - Electromobility antagonists say:
 - EVs will always run on marginal electricity

Australia

Performance on power generation

WTW GHG emissions (based on JEC 2013 values)

ICE

- Diesel: 15 * (15,4 +73,2)= 1329 g CO₂/km, hybrid 975 g CO₂/km
- BTL: 15 * 2,5= 38 g CO₂/km, hybrid 28 g CO₂/km
- CNG: 21 * (13 + 56,2) = 1453 g CO₂/km
- CBG: 21 * 14,8= 311 g CO₂/km

BEV

- Renewable electricity: 0 g CO₂/km
- Local biogas mw: 1,5 * 49= 74 g CO₂/km
- Nordic mix: 1,5 * 100= 150 g CO₂/km
- EU natural gas (4000 km): 1,5 * 477= 716 g CO₂/km
- EU mix medium: 1,5 * 508= 762 g CO₂/km
- EU coal conventional: 1,5 * 1053= 1579 g CO₂/km

WTW GHG

Summary

- VTT has created a comprehensive city bus emission database
- Driving cycle has a great effect on fuel savings of hybrid buses
- Local emissions of hybrid buses are not automatically lower than on conventional diesel buses
- eBUS project is about to reached halfway
 - Four test platforms has been set up
 - Test methods were validated with the test mule
 - More busses are expected during the coming few months, target 4 buses running spring 2014, still room for 2 busses
- Electric busses gives freedom to choose the overall green house gas emission by choosing the energy origin
 - Best options gives zero GHG
 - Worst options are worse than diesel buses using fossil fuel

VTT creates business from technology

