

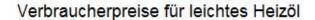
Energieeffiziente Betriebsführung von Heizungsanlagen in kommunalen Gebäuden

Ingenieurbüro Köhler/Hartwig Energiemanagement / Magdeburg Inhaber und geschäftsführender Gesellschafter: Christian Hartwig

Ziel der Bundesregierung

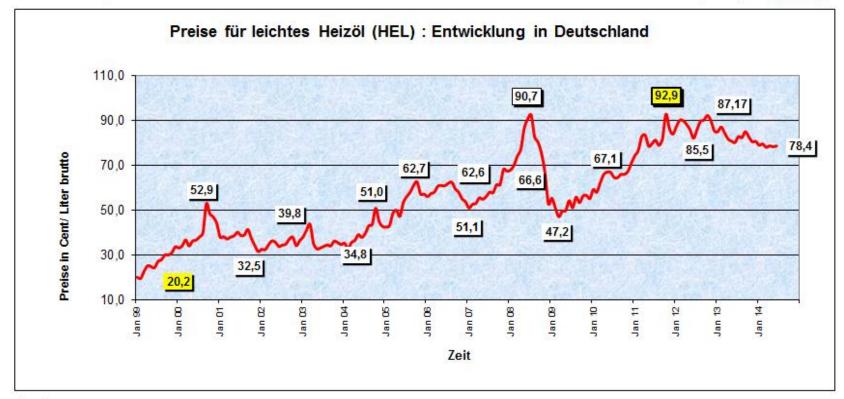
Reduktion der Emissionen von:

mindestens <u>40</u> Prozent bis 2020 und <u>80 bis 95</u> Prozent bis 2050 gegenüber 1990.


Das soll vor allem durch den Ausbau erneuerbarer Energien und eine Steigerung der Energieeffizienz erreicht werden.

Quelle: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB)

Presse- und Informationsstab



Preisentwicklung: Heizöl

Stand: September 2014 Abnahmemenge: 3.000 Liter

Steigerung auf: 388%

Quelle:

Statistisches Bundesamt

Mineralölwirtschaftsverband e.V. Hamburg

Heizungsanlagen und Regelungen

Aufbau einer Heizungsanlage

Warmwasserheizungsanlagen bestehen aus folgenden Hauptkomponenten:

Wärmeenergieerzeuger Erdgaskessel

Heizölkessel

Wärmepumpe

Fernwärmeübergabestation

Thermische Solaranlage

BHKW

Heizungsregelung witterungsgeführte Regelung

Verteilung der Wärme Rohrleitungssysteme

Verteiler

Heizkreise

Wärmeübergabe Heizkörper (Plattenheizkörper, Gussradiatoren)

Fußbodenheizung

Deckenstrahlplatten

Lüftungsanlagen

Geregelte Pumpen-Mischer-Heizkreise einer Heizungsanlage

Die professionelle Bedienung der Heizungsregelungen ist Grundvoraussetzung für eine energieeffiziente Betriebsführung.

Möglichkeiten der Bedienung von Heizungsregelungen

durch kommunales technisches Personal vor Ort

(Hausmeister/ Verwaltungsangestellte)

Voraussetzung:

praxisbezogene umfassende techn. Einweisung durch eine Fachfirma über mindestens 2 Heizperioden

durch ein externes Fachunternehmen

Empfehlung:

längerfristige Bedienung unumgänglich, vertraglich regeln

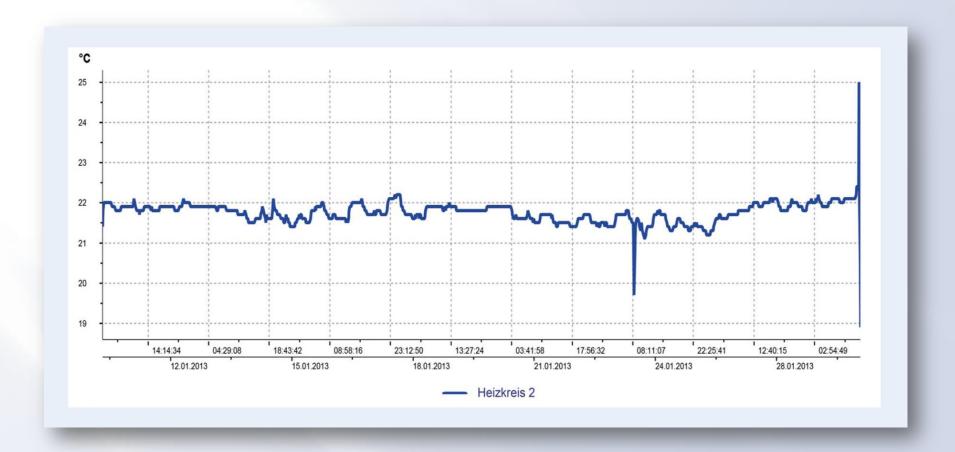
Vorgehensweise in der Praxis

Ermittlung des Ist-Zustandes am Beispiel einer Grundschule

- Welchen Wärmeenergieerzeuger hat die Grundschule?
- Welche maximale Leistung erzeugt der Kessel?
- Ist es eine modulierend fahrende Kesselanlage?
- Mit welcher/n Regelung/en (Fabrikat) ist die Heizungsanlage ausgerüstet?
- Welche Parameter sind in der Heizungsregelung hinterlegt?
- Was für ein Verteilungssystem ist vorhanden?
- Wie viele Heizkreise versorgen das Gebäude?
- Was für ein Fabrikat weisen die Thermostatventile auf?
- Wie und wann wird das Gebäude genutzt?

Festlegung von Referenzräumen für Innenraumtemperaturmessungen

Innenraumtemperaturmessungen in Referenzräumen


Messgeräte zur Ermittlung der Werte

Messgeräteset

Computergestützte Auswertung der Innenraumtemperaturmessungen

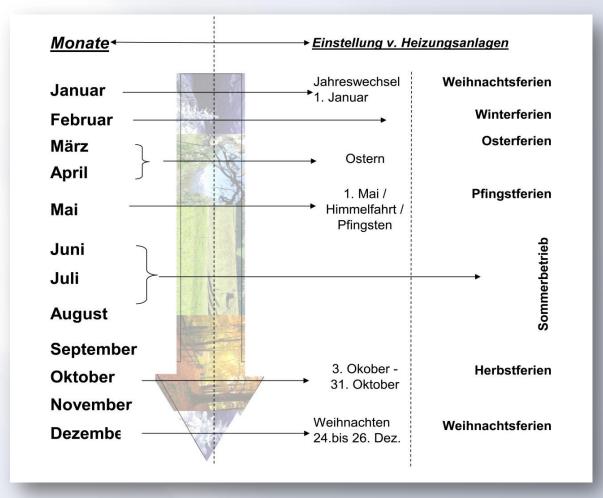
Regelmäßige Anpassung der Parameter an die aktuelle Witterung und Nutzung des Gebäudes

Messen – Auswerten – Regeln – Messen – Auswerten – Regeln Laufender Prozess

Parametereinstellungen in der Heizungsregelung

Grundparameter

- Steilheit der Heizkurve
- Parallelverschiebung der Heizkurve
- Wochenprogramm für Heizzeiten Mo So
- Absenkmodus der Vorlauftemperatur
 (Nichtnutzungszeit: z. B. Nachtabsenkung)


Weitere Parameter

- Vorlauftemperatur Minimum/ Maximum
- Standbybetrieb Tag und Nacht
- Sondertage f
 ür Heizzeiten: Ferien, Feiertage

Eingestellte Parameter in der Heizungsregelung werden immer vor Ort dokumentiert!

Effektive Anpassung von Parametern in der Heizungsregelung an die aktuelle Witterung und Nutzung von Gebäuden



Zeitschiene

Angestrebter Temperaturverlauf in unserer Beispielschule

negativer Temperaturverlauf

→ hoher Wärmeenergieverbrauch

Ergebnisse

Kosten- und CO₂-Reduzierung

Zeitraum: 2008 bis 2012

Anzahl der Gebäude: 300

Kosteneinsparung: 4.000.000 €

CO₂-Reduzierung: 13.000 t

15 %

weniger Treibhausgase