

Das Lastverschiebungspotenzial bei industriellen Prozessen am Beispiel der Zementindustrie

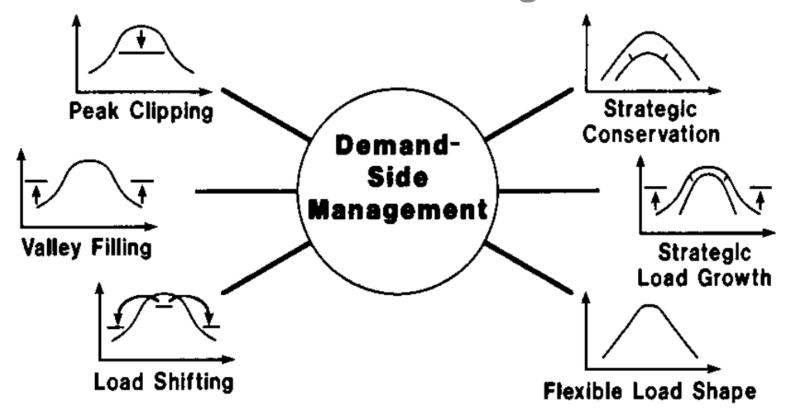
Alois Kraußler

Sächsische Fachsymposium ENERGIE 2014 (Dresden), 01.12.2014

www.4wardenergy.at

Inhalt

- 1. Einführung
- 2. Industrielles DR
 - Demand Response-Potenziale
 - Cost Curve
 - Hemmnisse
- 3. DR in der Zementindustrie
 - Fallstudie
 - Sichtweisen (Netzbetreiber, Industriebetrieb)
 - Wirtschaftliche Einschränkungen
- 4. Conclusio


01.12.2014

- Netzeinspeisung aus Windkraft und Photovoltaik verursachen bereits signifikante Netzprobleme
- Zukunftsszenarien zeigen ein sich verschlechterndes Problem auf -> Regelenergiebedarf steigt
- Kostengünstige Maßnahme zur Steigerung der Regelenergie: Lastverschiebung (z. B. anstelle von Speichern)
- Lastverschiebung unterstützt die Integration Erneuerbarer wesentlich

Definition von Lastverschiebung

Definition von Lastverschiebung

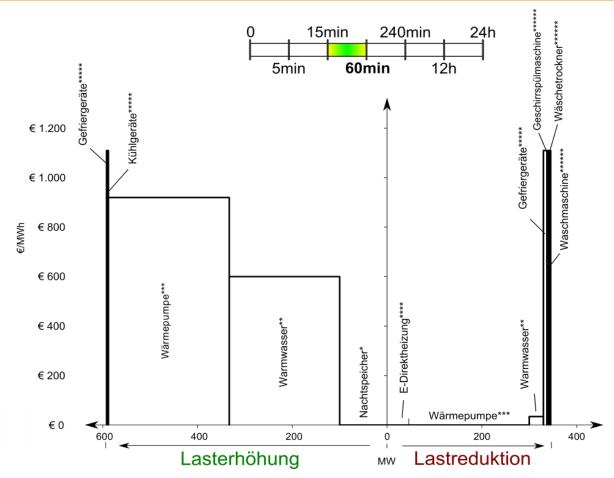
- Demand-Side-Managements (DSM):
 - Steuerung der Energienachfrage
 - jede Art der Endkundenmitwirkung
 - Energieeffizienz- und Energiesparmaßnahmen zur strategischen Entwicklung des Energieverbrauchs
- Demand Response (DR):
 - beeinflusst das Elektrizitätssystem kurzfristiger
 - Stromeinsparung steht nicht im Vordergrund
 - Flexibilisierung des Verbrauchs steht im Fokus
- Lastverschiebung ist somit eine DR-Maßnahme

Lastverschiebung ist...

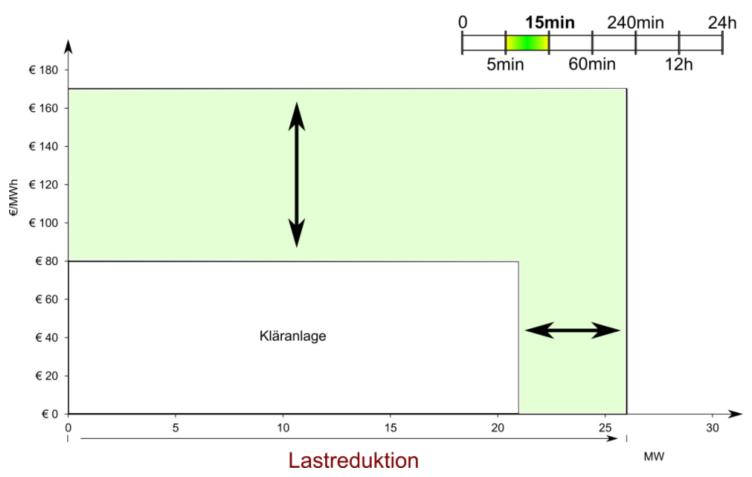
- eine nichtstrategische Einflussnahme
- eine Verhaltensbeeinflussung
- die Vermeidung von Lasten in Spitzenzeiten (Einsparung, Peak Clipping)
- die Verschiebung von Lasten weg von den Spitzenlasten (Lastverschiebung, Load Shifting), bevorzugt in Lastentäler (Valley Filling)

Lastverschiebung...

- ermöglicht eine Flexibilisierung der Lastkurve (=Beeinflussung des Lastgangs) auf Endkundenseite (z. B. in einem Gebäude)
- trägt zur Erreichung folgender Ziele bei:
 - Nutzung bestehender Produktionskapazitäten
 - Nutzung bestehender Netzkapazitäten
 - Integration Erneuerbarer


- Wo, wie und wann Lastverschiebung durchgeführt wird, ist nicht selbstverständlich
- Aktuell bestehen
 - technische,
 - regulatorische und
 - marktbasierende (keine gängigen Geschäftsmodelle) Probleme
 zur Realisierung des DR-Potenzial
- Beeinflussung des regulatorischen Rahmens notwendig
- Kenntnis über die Lastverschiebungspotenziale sinnvoll
- Kosten zur Hebung des Potenzials sollen bekannt sein

DR-Potenziale abseits der Industrie


Sektoren, Prozesse		Betrachtete Anwendung	
		Kühl- und Gefriergeräte, Waschmaschine, Wäschetrockner, Geschirrspüler	
Anwendungen im Haushalt	Haushalte	Warmwasser	
		E-Direktheizung	
		Nachtspeicherheizung	
		Wärmepumpe	
Mobilität	E-Cars	Laden und Entladen von E-Cars	
	Lebensmittelindustrie	Lahanamittalkühlung	
Elektrische	Lebensmitteleinzelhandel	Lebensmittelkühlung	
Kälteerzeugung	Chemische Industrie	Luftzerlegung	
	Dienstleistung	Konditionierung von Gebäuden	
Pumpanwendungen	Wasserversorgung	Grundwasser- und Verteilpumpen	
	Schöpfwerke	Wasserhaltung, Kläranlagen	
Kommunale	Abwasserreinigung	Kläranlagen	
Infrastruktur	Wasserversorgung	Pumpen	
01.12.2014	Alois Kraußler	10 www.4wardenergy.at	

Cost Curve Sektor Haushalte (16-59 min)

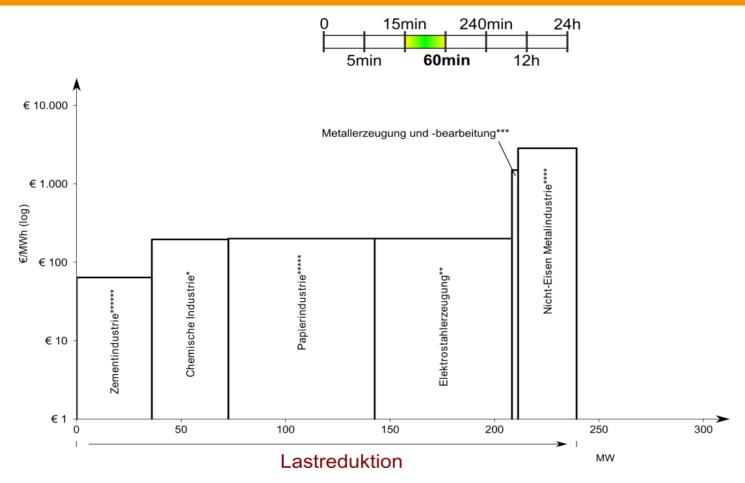
Cost Curve Sektor "Kommunale Infrastruktur" (16-59 min)

01.12.2014

- Industrie: ca. 29 % des Gesamtstrombedarfes Deutschlands
- Lastverschiebung in der Industrie
 - Kann kurzfristiger und kostengünstiger realisiert werden (gegenüber Haushalte)
 - schaltbare Verbraucher notwendig
 - Prozess hat Priorität

DR-Potenziale in der Industrie

Prozess Bezeichnung	Abgrenzung	Bezeichnung der Anwendung	Bezeichnung der Technologie
Chemische Erzeugnisse	Herstellung von Industriegasen	Luftzerlegung	Luftverflüssigung
		Chloralkali-Elektrolyse	Elektrolyse
Elektrostahlerzeugung	Erzeugung von Roheisen, Stahl und Ferrolegierungen	Elektro-Stahlherstellung	Lichtbogenöfen
Nichteisen-Metalle (Alu, Kupfer, Zink-Blei)	Erzeugung und erste Bearbeitung von Nichteisen-Metallen	Schmelzflusselektrolyse, Elektrolyseur	Affinierung
	Gießerei	Leichtmetallguss	Induktionsöfen
Metallerzeugung und - bearbeitung	Oberflächenveredlung, Wärmebehandlung	Eisenguss	Widerstandsöfen
bearbeitung		Härten	Lichtbogenöfen
	Herstellung von Holz- und Zellstoff, Papier, Karton und Pappe	Holzstofferzeugung	Rohstoffaufbereitung
Papierherstellung		Aufbereitung von Altpapier	Holzstofferzeugung
1 apierner stellung		Papierherstellung und	Papiermaschine
		Veredlung	Nachbehandlung
	Zementherstellung	Rohmaterialaufbereitung	Brecher
Zementindustrie		Mischbettzerkleinerung	Rohrmühlen
Zemenunusme		Klinkerproduktion	Zementmühlen
		Abluftventilation	Abluftventilatoren


1.12.2014 Alois Kraußler 15 www.4wardenergy.at

Größten DR-Potenziale in der Industrie

Prozesse		Betrachtete Anwendung	
Elektrolyse	Chemische Industrie	Chloralkali-Elektrolyse	
	Metallbearbeitung -	Induktion of on Wideratendoof on	
	Wärmebehandlung	Induktionsofen, Widerstandsofen	
Elektrische	Giessereien	Induktionsofen, Lichtbogenofen,	
		Widerstandsofen	
Wärmeerzeugung	Stahlindustrie	Elektro-Stahlherstellung	
	NE-Metallindustrie (Alu,	Schmelzflusselektrolyse, Affinierung	
	Kupfer, Zink-Blei)		
Miihlonanwondungon	Papierindustrie	Schleifer, Refiner, Pulper	
Mühlenanwendungen	Zementindustrie	Roh- und Zementmühlen	

Cost Curve Sektor Industrie (16-59 min)

Identifizierte Hemmnisse:

- 1. Komplexität der Prozesstechnik erfordert
 - individuelle Betrachtungen
 - besonders erfahrenes Bedienpersonal
 - hohe Lagerkapazitäten
 - hohen Wartungsaufwand
 - Risikobewertung
 - trotzdem gleichbleibende Produktqualität
- 2. Zusammenspiel von IKT und Netzbetrieb
 - 1. Standardisierte Smart Meter
 - 2. Sicherheit der Datenübertragung und deren Manipulierbarkeit
 - 3. Zuverlässigkeit bei Leistungsanforderungen

Identifizierte Hemmnisse:

3. Hürden im Marktbereich

- Derzeitige kein wirtschaftlicher Einsatz möglich
- Spotmarktpreise an der Strombörse haben derzeit ein zu geringes Niveau
- Am Regelenergiemarkt wären stabil höhere Erlöse zu erwarten, aber die Hemmnisse sind derzeit zu groß
- Passende Geschäftsmodelle notwendig

4. Kenntnisstand über Lastmanagement

- Durch fehlende Anreize ist der Kenntnisstand bei allen betroffenen Unternehmen dementsprechend gering
- Skepsis durch bewusstseinsbildende Aktivitäten und Referenzen abgebauen

Identifizierte Hemmnisse:

- 5. Organisatorische und systemische Herausforderungen
 - meist Abwandlung des Betriebskonzepts notwendig
 - Auswirkungen auf Arbeitszeiten, Lieferverträge, Lagerstand usw.
 - Schulung der Mitarbeiter auf die geänderten Bedingungen
 - Koordination der technischen Umsetzung (im Betrieb und gesamtsystemisch)
- 6. Unsicherheit der wirtschaftlichen Betrachtung
 - umfangreichen Analyse der jeweiligen Anlagensituation gemeinsam mit Mitarbeitern notwendig
 - zeitintensiv und Unsicherheit bezüglich der Prognose

Identifizierte Hemmnisse:

- 6. Unsicherheit der wirtschaftlichen Betrachtung
 - Es fehlen Erfahrungswerte zur genauen Kostenabschätzung
 - Investitionen in technische Einrichtungen notwendig (z. B. Kommunikationseinrichtung)
 - Gesamtkosten vs. zu erwartende Gewinne
 - Höhere Personalkosten durch Überstunden
 - Auswirkungen auf die Anlageneffizienz
 - Schafft Produktion die Nachfrage
 - Erhöhte Wartungskosten möglich
 - Unsicherheiten am Markt (z.B. beim Verkauf von Regelleistung)
- 7. Mangelnde gesellschaftliche Akzeptanz

01.12.2014 Alois Kraußler 22 **www.4wardenergy.at**

Fallstudie für Österreich

- Lastverschiebungsvorgang erfolgte teilautomatisch
- Reine Lastreduktion (keine Steigerung) bei Zementmühlen
- Brecher od. Rohmühlen wären auch möglich, blieben jedoch unberücksichtigt
- Voranmeldung des Lastabwurfs und des Zeitfensters (2 Zeitblöcke a`4 h) manuell vom Netzbetreiber am Vortag
- Sperrmöglichkeit für Betrieb
- Spitzenlastreduktion: 50 %
- Höhere Personalkosten u. Risiken, geringere Produktivität & Prozesseffizienz, größere mech. Beanspruchung
- Finanzieller Anreiz für Betrieb zu gering

Sichtweise der Produktionsbetriebe:

- In Zeiten schwacher Nachfrage für 15 Minuten möglich
- · Kann jedoch zu zusätzlichem Brennstoffeinsatz führen
- (Zwischen)lagerkapazitäten entscheidend
- Kompensation der Mehrausgaben und der Risikoaufschlag der höheren Ausfallwahrscheinlichkeit notwendig
- Stets individuelle Betrachtung notwendig
- Rahmenbedingungen zur wirtschaftlichen Nutzung fehlen

Sichtweise der Netzbetreiber:

- Kurzfristig ist Lastverschiebung bei Zementwerken für Stromnetzbetreiber sinnvoll
- …langfristig weniger (lokal befindet sich keine Industrie für die Integration von Erneuerbaren
- Häusliche vs. industrielle Potenziale
- Homogene Vielzahl vs. heterogene Einzellösungen
- Großflächige Automation vs. manuelle Steuerung
- Das wirtschaftlich nutzbare Potenzial erfordert schaltbare (zeitvariable) Tarife
- Kostenwahrheit und Geschäftsmodell notwendig

Einschränkungen für das wirtschaftliche Potenzial

- Direkte Mehrkosten der Lastverschiebung (z. B. höherer Personalkostenaufwand für Wochenendarbeiten)
- Indirekte Mehrkosten (z. B. Risikoaufschläge)
- Marktbedingte Probleme:
 - Kein Lastverschiebungspotenzial bei hoher Nachfrage (durch 100 %ige Auslastung in der Produktion)
 - Zu geringe finanzielle Anreize
- Prozesstechnische Probleme:
 - Kapazitäten der Mühlen
 - Auslastung der Materialzwischenlager
 - Benötigte Temperaturen zur Trocknung des Materials

4. Conclusio

01.12.2014 Alois Kraußler 27 www.4wardenergy.at

Conclusio

- Ausbau erneuerbarer Energien führt zunehmend zu Produktionsspitzen
- Auswirkungen auf die Stromnetze steigen
- Netzausbaumaßnahmen können mit DR reduziert / vermieden werden
- Technisches / theoretisches
 Lastverschiebungspotenzial vorhanden

Conclusio

- Viele Potenzial können kostengünstig gehoben werden
 - heterogene Großverbraucher mit geringem IKT-Aufwand (z. B. Industrieverbraucher)
 vs.
 - Homegene Kleinverbraucher mit hohem IKT-Aufwand (z. B. Haushaltsverbraucher)
- Industrie-Potenziale kurzfristiger adressierbar, als Haushaltspotenziale
- Mehraufwendungen müssen finanziell kompensiert werden

Conclusio

- Technische und wirtschaftliche, individuell angepasste Ansätze für industrielles DR
- Geeigneter institutioneller Rahmen notwendig
- Angepasste Markt- und Tarifstruktur im Übertragungs- und Verteilnetz
- Es ist vom politischen Willen abhängig, ob die Rahmenbedingungen für Lastverschiebung, insbesondere im industriellen Bereich, entsprechend geschaffen werden.

Kontakt:

Alois Kraußler 4ward Energy Research GmbH Impulszentrum 1, A-8250 Vorau e: alois.kraussler@4wardenergy.at

t: +43 664 88 500 33 9

w: www.4wardenergy.at

01.12.2014